• Overview
  • Understanding TSN
  • Driving TSN Development
  • TSN Solutions
  • TSN Resources
  • FAQ
RP Testing Blue Image

The incredible progress in machine intelligence and robotics in recent years has driven progress in automation, especially industrial automation and automotive control.

Explore How Automation Networks Are Changing

TSN offers many benefits to modern industrial automation networks by providing high bandwidth and reliable, dependable real-time communication.


Why TSN?

TSN can be leveraged for a variety of applications not only because of the technological advantages but also because of its lower total cost of ownership (TCO). You may have the added cost of replacing existing switches with TSN switches, but that typically costs less than duplicating networks and maintaining the additional networks.

In automation networks, TSN enables the convergence of numerous small, disconnected networks into one unified network structure. This new network can accommodate the requirements for real-time communication on a larger scale, while providing more transmission bandwidth for background data. Have a look at some use cases showing the benefits of network convergence in different markets.


Where does TSN Fit In?

Hirschmann is committed to further the TSN technology and deliver Industrial Ethernet switches with the highest possible quality standards. Explore our continuously expanding portfolio of TSN capable devices and software solutions ensuring reliable vendor independent communication.


Experience Our TSN Capable Portfolio

Hirschmann is committed to further the TSN technology and deliver Industrial Ethernet switches with the highest possible quality standards. Explore our continuously expanding portfolio of TSN capable devices and software solutions ensuring reliable vendor independent communication.

  • DIN Rail Switches
  • IP67 Switches
  • Software

Hirschmann Managed Fast/Gigabit Ethernet Switches – RSPE Expandable

Hirschmann RSPE Family

  • Future-proof design and best-possible investment protection: thanks to the maximum flexibility provided by the media modules
  • Maximum productivity for systems and machines - thanks to completely interruption-free data communication
  • Future-proof interoperability – built-in PRP and HSR based on international IEC62439 standard
  • Cost-effective solution – easy-to-add media modules and PoE/ PoE+ ports for a cost-efficient power supply of end devices





Hirschmann Next-Generation Compact Fast/Gigabit Ethernet Switches - BOBCAT

Hirschmann BOBCAT Family

  • Advanced security - including wire-speed access lists and automatic denial-of-service-prevention
  • Precise dara transmission - simultaneously support multiple services on the network through TSN technology
  • Prepare for future growth - increased bandwidth and speed capabilities
  • Increased uptime - broad support of redundancy mechanisms, such as MRP, HSR and PRP
  • Configure the perfect fit - switches support 4 to 28 ports with Layer 2 and Layer 3 capabilities

Hirschmann Managed Fast/Gigabit Ethernet IP67 Switches and Routers - OCTOPUS

Hirschmann OCTOPUS Family

  • Robust compact housing – ensures the highest industrial protection ratings (IP67/IP65) regarding mechanical stress, humidity, dirt, dust, shock, vibrations, heat and cold
  • Extended feature range – switches available from 8 to 28 ports, Fast Ethernet and Gigabit Ethernet models, feature vibration-resistant connectors for twisted pair cables or fiber-optic ports
  • Reduce costs for cabling – switches can be cascaded as often as required – permitting implementation of decentralized networks with short paths to the respective devices
  • Optimum conformity to standards – ensures maximum long-term viability, meaning that systems can be cost-effectively extended whenever necessary

Hirschmann Operating System - HiOS

Hirschmann HiOS Switch Software

  • Security - comprehensive functionality to build a secure network foundation
  • Redundancy - multiple technologies to match industrial network topologies, including MRP, MSTP, PRP, HSR, DLR and VRRP
  • Future-proof - regular software updates, plus a brand-agnostic, built-in OPC UA server to bridge communication between all levels of automation
  • Real-time communication - free, embedded and easily configurable TSN functionality with no special hardware, software or knowledge required
  • IT/OT convergence - office and industrial management protocols to facilitate the integration of IT and OT network




Hirschmann Industrial HiVision Network Management Software

Hirschmann Industrial HiVision

  • Actionable – obtain instant visibility of key performance indicators with the Network Dashboard, allowing timely remediation that improves uptime and security
  • Time saving – easily identify, map and configure all network infrastructure with MultiConfig, including SNMP-enabled devices from any manufacturer, even during live operation
  • Performance assured – download a free version of the software for your unlimited use to experience the benefits before you buy




The Transformation of Industrial Automation

Industrial automation markets are driven by the transition from Industry 3.0 to Industry 4.0. or the smart factory, one part of the Industrial Internet of Things (IIoT). This transition is commonly illustrated as a shift from the automation pyramid to the automation pillar.


The pyramid model, which industries have followed for several decades, strictly separates functional layers from the factory shop floor (the field level) up to the management systems at the top. Real time data communication is usually at the field level, where sensors and actuators are located, and between the field and controller levels.


The automation pillar in an IIoT (Industrie 4.0) production environment still has a field level on the factory shop floor, but the total number of sensors on the field level is drastically higher to allow a much tighter analysis and control of the manufacturing functions.

In the automation pillar, the controller level disappears. Some of the control functions move to the field level as distributed control units, which are used for extremely fast and reliable reactions, such as for safety functions. Other control units move into the management level (factory backbone) as centralized control units (“Virtual PLC”).


Virtual control functions or virtual programmable logic controllers (PLCs), hosted in the local automation cloud, interact directly with the production process through the connectivity layer. Virtualization of the PLCs provides maximum flexibility; they can be added and removed, and computing power can be allocated to wherever it’s needed most. Applications in the factory backbone don’t even need to be located physically close to the field-level applications. They can be located anywhere: in the IT department or even in a data center far from the factory, depending on the maximum end-to-end latency (delay) the applications allow. This flexibility in the control processes translates into flexibility in the production process.


Between the field level and factory backbone is a connectivity level. Both the field level and the connectivity level require high-speed, low-latency network performance. In addition, the connectivity layer carries lower-priority background traffic in a way that must not slow down the time-critical traffic. This is where TSN comes in.


 Automation Pillar 2021


FIGURE: Moving from the automation pyramid to the automation pillar.


Recognizing the Need for TSN in the IIoT Environment

The connectivity layer in the automation pillar can be considered as the information superhighway between the factory backbone and the field layer. Traffic consists of mission-critical data and less urgent data. The connectivity layer needs to get all traffic where it’s going, but mission-critical data is urgent; it needs to reach its destination on time. When building a network to carry both urgent and non-urgent traffic, you have four options:

  • Use TSN, which enables urgent and less urgent data to share the network connection, while preventing less urgent traffic from hindering the flow of the more urgent traffic.
  • Build separate networks for the different applications — a high-cost option.
  • Massively oversize the network infrastructure, a widely used but extremely expensive approach called bandwidth overprovisioning.
  • Live with the traffic delays in mission-critical data, which usually isn’t a viable option.

Of these four options, the clear choice is the first option — use TSN.


TSN – A New Evolution in Mission-Critical Networking

In highly automated systems, real-time communication is essential and sometimes vital. Imagine a self-driving car hesitating to brake for a pedestrian in its path or robots on an assembly line receiving delayed instructions from the computer that’s synchronizing their movements.


Several real-time communication technologies, including EtherCAT, PROFINET IRT, and Sercos III, are used to ensure timely communications, but they have compatibility issues and offer limited, if any, support for future enhancements such as increased bandwidth.


Time-sensitive networking overcomes these limitations to provide the following three essentials:

  • Dependable real-time communication
  • High bandwidth to accommodate the vast amount of sensor and background data that flows across automation networks
  • Backward compatibility to Ethernet devices


TSN Future-Proof Ethernet Networks

TSN takes IEEE* 802 Ethernet to the next level to address the requirements from today’s and future automation networks. TSN offers unprecedented low end-to-end latency, as well as frame delivery precision with very low jitter that goes beyond anything that was ever possible with standardized IEEE 802.1 technology. Standardization in IEEE 802.1 and IEEE 802.3 ensures interoperability between different vendors, a broad market scope, scalability with future Ethernet speed increases and investment security.

* Institute of Electrical and Electronics Engineers

Since the establishment of the Field Level Communications (FLC) initiative in the OPC Foundation in November 2018, it has been clear: The technology combination of OPC UA and IEEE TSN as a vendor-neutral communication technology enjoys broad support not only on paper, but also in technical implementation. Hirschmann, part of the Belden Group, has supported this development from the very beginning.

  • Hirschmann is a pioneer in TSN Industrial Ethernet and is constantly re-de fining the limits of the technology.
  • Hirschmann excels in time synchronization. Hirschmann Switches are used in the most demanding applications that require precise timing.
  • Hirschmann network management software solutions enable the conflguration and operation of modern lloT networks.


Where TSN fits in?

Automatisation industrielle

Dans le domaine de l’automatisation industrielle, la convergence réseau permet un contrôle distribué en temps réel ; les grosses machines et les nombreux robots peuvent interagir les uns avec les autres de manière plus précise et plus flexible qu’auparavant. Les entreprises peuvent activer des applications qui, à l'instar de la maintenance prédictive, nécessitent l’analyse de quantités importantes de données de capteurs. Un réseau convergé du cloud au capteur offre également un accès à distance sécurisé aux machines de production via Internet pour effectuer à distance la maintenance et d’autres tâches.

Réseaux embarqués automobiles

Les automobiles modernes sont équipées d’un nombre toujours croissant d’unités de contrôle électronique embarquées, destinées à couvrir de nouvelles fonctionnalités, telles que la conduite autonome. La multiplication des fonctionnalités a entraîné une demande encore plus grande de connectivité physique et de bande passante de communication.

Les systèmes de bus automobiles, dont FlexRay, Controller Area Network (CAN) et Media Oriented Systems Transport (MOST), ont du mal à répondre à cette demande. Ils s’appuient tous sur un câblage physique dédié, ajoutant de la complexité et du poids. Le poids supplémentaire réduit l’économie de carburant et les performances.

Le principal cas d’utilisation des réseaux automobiles embarqués pour les voitures et les camions concerne la convergence et le remplacement des différents bus de communication embarqués par un protocole Ethernet déterministe. La raison sous-jacente concerne le poids et la complexité du faisceau de câbles dans une automobile moderne.

TSN permet la convergence et le remplacement de différents bus de communication embarqués pour former une couche de connectivité unifiée.

Ethernet n’a encore remplacé qu'un petit nombre de ces systèmes de bus, principalement en raison du fait que le câblage Ethernet ne répondait pas aux exigences d’immunité électromagnétique du cas d’utilisation de la voiture embarquée, mais cela a changé : le groupe de travail IEEE 802.3 a spécifié plusieurs puces de couche physique (PHY) capables de répondre à ces exigences. L’introduction des PHY a ouvert le marché des voitures embarquées à Ethernet et à TSN.

Capable de fusionner en un seul câble le trafic de différentes priorités, sans rétroaction, TSN est la technologie idéale pour la communication dorsale embarquée dans le véhicule.

Les constructeurs automobiles peuvent utiliser TSN de différentes manières en fonction de leur architecture. Pour certains fabricants, TSN connecte uniquement les différents domaines d’application à l’intérieur du véhicule, tels que le groupe motopropulseur, le contrôle de la carrosserie et le divertissement des passagers, en se connectant à chaque domaine via une passerelle. Différentes technologies, telles que MOST ou FlexRay, sont utilisées à l’intérieur de chaque domaine.

Dans d’autres cas, TSN est également utilisé dans les domaines d’application individuels et remplace complètement le réseau de bus de véhicule embarqués. Certains fabricants affirment déjà qu’à terme, TSN remplacera tous les systèmes de bus embarqués, à l’exception du CAN de diagnostic.

Automatisation de l’énergie

Dans le domaine de l’automatisation de l’énergie, par exemple, dans les sous-stations électriques, il est possible d'utiliser TSN pour permettre d'acheminer des données critiques, telles que des valeurs échantillonnées de tension et de courant, à travers le réseau jusqu’à l’équipement de protection électrique. TSN peut également être utilisé pour améliorer les performances des notifications d’événements importants avec le protocole GOOSE (Generic Object-Oriented Substation Events), lorsque ce protocole GOOSE utilise l'infrastructure réseau employée, par exemple, pour les données des capteurs ou la surveillance du réseau.

Applications de transport

Dans le domaine des transports, par exemple sur les réseaux ferroviaires, les applications de confort telles que le divertissement des passagers peuvent partager un réseau avec d’autres applications, telles que l’information sur les passagers ou les fonctions de contrôle qui ne relèvent pas de la sécurité. Les fonctions de sécurité peuvent à leur tour être combinées avec d’autres fonctions de contrôle sur des réseaux de contrôle dédiés.

Browse Downloads & Insights on Industry Trends

TSN Resources

Time-Sensitive Networking (TSN) White Paper

White Paper

Time-Sensitive Networking (TSN) White Paper

Learn how TSN can help you realize more flexible, intelligent and dynamic production facilities


Changing the Face of Automation with TSN

Industrial Automation

Digital technology has taken over many aspects of our lives and the factory floor is no different. Thanks to Industry 4.0 (also referred to as the “smart factory”), digital technology has become a priority for the manufacturing industry over the...

Oliver Kleineberg | 01.27.2021

What Can TSN Do For You?

Industrial Automation

By now, most industrial network operators have heard about Time-Sensitive Networking, or TSN. We get a lot of questions from customers about its status and how it can benefit their operation. As someone who works as an editor for several TSN...

Stephan Kehrer | 12.10.2019

Future-Proof Now: How the Next Generation of Switches are Meeting TSN Network Demands

Industrial Automation

As many readers know, Belden is no stranger to the world of compact managed switches, and we’re proud of the fact that network operators have made the company the market leader with more than 700,000 units in active operation worldwide.

Juergen Schmid | 05.21.2019

How TSN Guarantees Real-Time Communication for Digital Substations

Industrial Automation

If you’re a regular follower of our blog, you’ve likely seen the topic of Time Sensitive Networking (TSN) pop up repeatedly. That’s because we believe it’s a critical set of technologies that will finally provide timing guarantees for the delivery...

Germán Fernández | 12.13.2017

What Does TSN Configuration Look Like Today and In the Future?

Industrial Automation

Time-sensitive networking (TSN) is a very hot topic in the industrial world. You’ve probably read numerous articles on the new standard over the past several months, all of which likely tout the revolutionary nature of the real-time communication...

Stephan Kehrer | 07.19.2017

Get inspired by these useful FAQs

What TSN stands for?

TSN (Time Sensitive Networking) is a collection of standards that enables deterministic messaging over standard Ethernet networks. As defined by the Institute of Electrical and Electronics Engineers (IEEE), TSN involves a form of network traffic management to ensure non-negotiable time frames for end-to-end transmission latencies.


What is the difference between latency and jitter?

Latency = The time it takes data to travel from point A to point B
Jitter = Any variation in latency

For example, suppose you have to make it to an appointment at a specific time. You go online, map the route, and find out that you need 30 minutes to drive there. You type the destination into your smartphone’s GPS app, and it gives the same estimate: 30 minutes. In fact, you’ve driven there before, and it has always taken you 30 minutes. That’s latency.

Thirty minutes before your appointment, you hop in your car and start driving to your appointment. Ten minutes later, you’re stuck in traffic. You have no idea how long the delay will be. That’s jitter.

What is OPC?

OPC is the interoperability standard for the secure and reliable exchange of data in the industrial automation space and in other industries. It is platform independent and ensures the seamless flow of information among devices from multiple vendors. The OPC Foundation is responsible for the development and maintenance of this standard.

The OPC standard is a series of specifications developed by industry vendors, end-users and software developers. These specifications define the interface between Clients and Servers, as well as Servers and Servers, including access to real-time data, monitoring of alarms and events, access to historical data and other applications.

What is the difference between OPC and OPC UA?

The OPC Unified Architecture (UA), released in 2008, is a platform independent service-oriented architecture that integrates all the functionality of the individual OPC Classic specifications into one extensible framework.

This multi-layered approach accomplishes the original design specification goals of:

  • Functional equivalence: all COM OPC Classic specifications are mapped to UA
  • Platform independence: from an embedded micro-controller to cloud-based infrastructure
  • Secure: encryption, authentication, and auditing
  • Extensible: ability to add new features without affecting existing applications
  • Comprehensive information modeling: for defining complex information

What are the main advantages of switching to OPC UA over TSN?

By using open and standard technologies like OPC UA and TSN in combination, the industrial automation market can avoid the danger that fieldbus providers simply add new layers of proprietary technology on top of TSN. OPC UA over TSN fulfils all of the strict requirements from industrial applications, while delivering all of the flexibility and interoperability known from enterprise IT:

  • Fully open, standard and interoperable communication
  • Precise timing and guaranteed delivery for critical messages
  • Critical and non-critical traffic converged on one network transparent to the user
  • Automated and dynamic network configuration based on application requirements
  • Ubiquitous, connection from sensors to the cloud without gateways
  • Backward and forward compatibility, integration of existing Ethernet devices